If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4w^2+8w-21=0
a = 4; b = 8; c = -21;
Δ = b2-4ac
Δ = 82-4·4·(-21)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-20}{2*4}=\frac{-28}{8} =-3+1/2 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+20}{2*4}=\frac{12}{8} =1+1/2 $
| 4a+12+6a=30 | | 9.4x-25=-39.1 | | -(-2x+8)=16 | | X/2-8/2=9x/2-4 | | 10x+3+5x+9+90=180 | | 3x+5-15x=25 | | 2(3x+3=-18 | | 3−8x−6=3 | | (2.95/6)=(x/50) | | a^2+15a+15=7a | | p/7=8=6.3 | | 5−8−2x=75 | | -123=-6+3(-8m-7) | | 32+8x=-4x+4(x-8 | | 2n-1=n+6 | | -5(x-3)+10=-2(x+4) | | F(x)=6x^2+5x-3 | | -36+8n=4(4n+1) | | 3(7x-6)=5(3+5x) | | 2y/5-1=1 | | 9y+5y+y=180 | | 1.3p=42 | | 198(.5)=p | | 4r-2r+4-2=42 | | .5p=198 | | 1468m=48 | | .8p=680 | | 1468m=58 | | 1.1p=165 | | 2x+14=-6x-10 | | 400(.6)=p | | 4x^2+5x+6=3x^2 |